Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Neurobiol ; 86: 102872, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564829

RESUMO

The precision of primate visually guided reaching likely evolved to meet the many challenges faced by living in arboreal environments, yet much of what we know about the underlying primate brain organization derives from a set of highly constrained experimental paradigms. Here we review the role of vision to guide natural reach-to-grasp movements in marmoset monkey prey capture to illustrate the breadth and diversity of these behaviors in ethological contexts, the fast predictive nature of these movements [1,2], and the advantages of this particular primate model to investigate the underlying neural mechanisms in more naturalistic contexts [3]. In addition to their amenability to freely-moving neural recording methods for investigating the neural basis of dynamic ethological behaviors [4,5], marmosets have a smooth neocortical surface that facilitates imaging and array recordings [6,7] in all areas in the primate fronto-parietal network [8,9]. Together, this model organism offers novel opportunities to study the real-world interplay between primate vision and reach-to-grasp dynamics using ethologically motivated neuroscientific experimental designs.

2.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050176

RESUMO

Each time we make an eye movement, attention moves before the eyes, resulting in a perceptual enhancement at the target. Recent psychophysical studies suggest that this pre-saccadic attention enhances the visual features at the saccade target, whereas covert attention causes only spatially selective enhancements. While previous nonhuman primate studies have found that pre-saccadic attention does enhance neural responses spatially, no studies have tested whether changes in neural tuning reflect an automatic feature enhancement. Here we examined pre-saccadic attention using a saccade foraging task developed for marmoset monkeys (one male and one female). We recorded from neurons in the middle temporal area with peripheral receptive fields that contained a motion stimulus, which would either be the target of a saccade or a distracter as a saccade was made to another location. We established that marmosets, like macaques, show enhanced pre-saccadic neural responses for saccades toward the receptive field, including increases in firing rate and motion information. We then examined if the specific changes in neural tuning might support feature enhancements for the target. Neurons exhibited diverse changes in tuning but predominantly showed additive and multiplicative increases that were uniformly applied across motion directions. These findings confirm that marmoset monkeys, like macaques, exhibit pre-saccadic neural enhancements during saccade foraging tasks with minimal training requirements. However, at the level of individual neurons, the lack of feature-tuned enhancements is similar to neural effects reported during covert spatial attention.


Assuntos
Callithrix , Movimentos Sacádicos , Animais , Masculino , Feminino , Movimentos Oculares , Atenção/fisiologia , Macaca , Estimulação Luminosa
3.
Nat Neurosci ; 26(12): 2192-2202, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996524

RESUMO

Animals move their head and eyes as they explore the visual scene. Neural correlates of these movements have been found in rodent primary visual cortex (V1), but their sources and computational roles are unclear. We addressed this by combining head and eye movement measurements with neural recordings in freely moving mice. V1 neurons responded primarily to gaze shifts, where head movements are accompanied by saccadic eye movements, rather than to head movements where compensatory eye movements stabilize gaze. A variety of activity patterns followed gaze shifts and together these formed a temporal sequence that was absent in darkness. Gaze-shift responses resembled those evoked by sequentially flashed stimuli, suggesting a large component corresponds to onset of new visual input. Notably, neurons responded in a sequence that matches their spatial frequency bias, consistent with coarse-to-fine processing. Recordings in freely gazing marmosets revealed a similar sequence following saccades, also aligned to spatial frequency preference. Our results demonstrate that active vision in both mice and marmosets consists of a dynamic temporal sequence of neural activity associated with visual sampling.


Assuntos
Callithrix , Fixação Ocular , Animais , Camundongos , Movimentos Oculares , Movimentos Sacádicos , Percepção Visual , Movimentos da Cabeça/fisiologia
4.
J Vis Exp ; (198)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37590508

RESUMO

The marmoset monkey provides an ideal model for examining laminar cortical circuits due to its smooth cortical surface, which facilitates recordings with linear arrays. The marmoset has recently grown in popularity due to its similar neural functional organization to other primates and its technical advantages for recording and imaging. However, neurophysiology in this model poses some unique challenges due to the small size and lack of gyri as anatomical landmarks. Using custom-built micro-drives, researchers can manipulate linear array placement to sub-millimeter precision and reliably record at the same retinotopically targeted location across recording days. This protocol describes the step-by-step construction of the micro-drive positioning system and the neurophysiological recording technique with silicon linear electrode arrays. With precise control of electrode placement across recording sessions, researchers can easily traverse the cortex to identify areas of interest based on their retinotopic organization and the tuning properties of the recorded neurons. Further, using this laminar array electrode system, it is possible to apply a current source density analysis (CSD) to determine the recording depth of individual neurons. This protocol also demonstrates examples of laminar recordings, including spike waveforms isolated in Kilosort, which span multiple channels on the arrays.


Assuntos
Callithrix , Eletrofisiologia Cardíaca , Animais , Cultura , Eletrodos , Neurônios
5.
Nat Commun ; 14(1): 3656, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339973

RESUMO

Fixation constraints in visual tasks are ubiquitous in visual and cognitive neuroscience. Despite its widespread use, fixation requires trained subjects, is limited by the accuracy of fixational eye movements, and ignores the role of eye movements in shaping visual input. To overcome these limitations, we developed a suite of hardware and software tools to study vision during natural behavior in untrained subjects. We measured visual receptive fields and tuning properties from multiple cortical areas of marmoset monkeys who freely viewed full-field noise stimuli. The resulting receptive fields and tuning curves from primary visual cortex (V1) and area MT match reported selectivity from the literature which was measured using conventional approaches. We then combined free viewing with high-resolution eye tracking to make the first detailed 2D spatiotemporal measurements of foveal receptive fields in V1. These findings demonstrate the power of free viewing to characterize neural responses in untrained animals while simultaneously studying the dynamics of natural behavior.


Assuntos
Córtex Visual , Animais , Córtex Visual/fisiologia , Campos Visuais , Visão Ocular , Movimentos Oculares , Haplorrinos , Estimulação Luminosa
6.
Nat Protoc ; 18(2): 579-603, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36376588

RESUMO

Circadian clocks drive cyclic variations in many aspects of physiology, but some daily variations are evoked by periodic changes in the environment or sleep-wake state and associated behaviors, such as changes in posture, light levels, fasting or eating, rest or activity and social interactions; thus, it is often important to quantify the relative contributions of these factors. Yet, circadian rhythms and these evoked effects cannot be separated under typical 24-h day conditions, because circadian phase and the length of time awake or asleep co-vary. Nathaniel Kleitman's forced desynchrony (FD) protocol was designed to assess endogenous circadian rhythmicity and to separate circadian from evoked components of daily rhythms in multiple parameters. Under FD protocol conditions, light intensity is kept low to minimize its impact on the circadian pacemaker, and participants have sleep-wake state and associated behaviors scheduled to an imposed non-24-h cycle. The period of this imposed cycle, Τ, is chosen so that the circadian pacemaker cannot entrain to it and therefore continues to oscillate at its intrinsic period (τ, ~24.15 h), ensuring circadian components are separated from evoked components of daily rhythms. Here we provide detailed instructions and troubleshooting techniques on how to design, implement and analyze the data from an FD protocol. We provide two procedures: one with general guidance for designing an FD study and another with more precise instructions for replicating one of our previous FD studies. We discuss estimating circadian parameters and quantifying the separate contributions of circadian rhythmicity and the sleep-wake cycle, including statistical analysis procedures and an R package for conducting the non-orthogonal spectral analysis method that enables an accurate estimation of period, amplitude and phase.


Assuntos
Temperatura Corporal , Ritmo Circadiano , Humanos , Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Sono/fisiologia , Luz , Descanso , Vigília/fisiologia
7.
Elife ; 112022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35730931

RESUMO

The visual pathways that guide actions do not necessarily mediate conscious perception. Patients with primary visual cortex (V1) damage lose conscious perception but often retain unconscious abilities (e.g. blindsight). Here, we asked if saccade accuracy and post-saccadic following responses (PFRs) that automatically track target motion upon saccade landing are retained when conscious perception is lost. We contrasted these behaviors in the blind and intact fields of 11 chronic V1-stroke patients, and in 8 visually intact controls. Saccade accuracy was relatively normal in all cases. Stroke patients also had normal PFR in their intact fields, but no PFR in their blind fields. Thus, V1 damage did not spare the unconscious visual processing necessary for automatic, post-saccadic smooth eye movements. Importantly, visual training that recovered motion perception in the blind field did not restore the PFR, suggesting a clear dissociation between pathways mediating perceptual restoration and automatic actions in the V1-damaged visual system.


Assuntos
Percepção de Movimento , Acidente Vascular Cerebral , Córtex Visual , Cegueira , Movimentos Oculares , Humanos , Percepção de Movimento/fisiologia , Estimulação Luminosa , Inconsciência , Córtex Visual/fisiologia , Vias Visuais , Percepção Visual/fisiologia
8.
Cereb Cortex ; 30(4): 2658-2672, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31828299

RESUMO

Visual motion processing is a well-established model system for studying neural population codes in primates. The common marmoset, a small new world primate, offers unparalleled opportunities to probe these population codes in key motion processing areas, such as cortical areas MT and MST, because these areas are accessible for imaging and recording at the cortical surface. However, little is currently known about the perceptual abilities of the marmoset. Here, we introduce a paradigm for studying motion perception in the marmoset and compare their psychophysical performance with human observers. We trained two marmosets to perform a motion estimation task in which they provided an analog report of their perceived direction of motion with an eye movement to a ring that surrounded the motion stimulus. Marmosets and humans exhibited similar trade-offs in speed versus accuracy: errors were larger and reaction times were longer as the strength of the motion signal was reduced. Reverse correlation on the temporal fluctuations in motion direction revealed that both species exhibited short integration windows; however, marmosets had substantially less nondecision time than humans. Our results provide the first quantification of motion perception in the marmoset and demonstrate several advantages to using analog estimation tasks.


Assuntos
Movimentos Oculares/fisiologia , Percepção de Movimento/fisiologia , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Córtex Visual/fisiologia , Adulto , Animais , Callithrix , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade da Espécie , Adulto Jovem
9.
J Vis ; 19(11): 12, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31557762

RESUMO

Saccadic eye movements sample the visual world and ensure high acuity across the visual field. To compensate for delays in processing, saccades to moving targets require predictions: The eyes must intercept the target's future position to then pursue its direction of motion. Although prediction is crucial to voluntary pursuit, it is unclear whether it is an obligatory feature of saccade planning. Saccade planning involves an involuntary enhanced processing of the target, called presaccadic attention. Does this presaccadic attention recruit smooth eye movements automatically? To test this, we had human participants perform a saccade to one of four apertures, which were static, but each contained a random dot field with motion tangential to the required saccade. In this task, saccades were deviated along the direction of target motion, and the eyes exhibited a following response upon saccade landing. This postsaccadic following response (PFR) increased with spatial uncertainty of the target position and persisted even when we removed the motion stimulus in midflight of the saccade, confirming that it relied on presaccadic information. Motion from 50-100 ms prior to the saccade had the strongest influence on PFR, consistent with the time course of perceptual enhancements reported in presaccadic attention. Finally, the PFR magnitude related linearly to the logarithm of stimulus velocity and generally had low gain, similar to involuntary ocular following movements commonly observed after sudden motion onsets. These results suggest that presaccadic attention selects motion features of targets predictively, presumably to ensure successful immediate tracking of saccade targets in motion.


Assuntos
Atenção/fisiologia , Movimentos Sacádicos/fisiologia , Adolescente , Adulto , Antecipação Psicológica/fisiologia , Feminino , Humanos , Masculino , Movimento (Física) , Estimulação Luminosa , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Incerteza , Visão Ocular/fisiologia , Campos Visuais/fisiologia , Adulto Jovem
10.
Dev Neurobiol ; 77(3): 300-313, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27804251

RESUMO

The common marmoset has attracted increasing interest as a model for visual neuroscience. A measurement of fundamental importance to ensure the validity of visual studies is spatial acuity. The marmoset has excellent acuity that has been reported at the fovea to be nearly half that of the human (Ordy and Samorajski []: Vision Res 8:1205-1225), a value that is consistent with them having similar photoreceptor densities combined with their smaller eye size (Troilo et al. []: Vision Res 33:1301-1310). Of interest, the marmoset exhibits a higher proportion of cones than rods in peripheral vision than human or macaque, which in principle could endow them with better peripheral acuity depending on how those signals are pooled in subsequent processing. Here, we introduce a simple behavioral paradigm to measure acuity and then test how acuity in the marmoset scales with eccentricity. We trained subjects to fixate a central point and detect a peripheral Gabor by making a saccade to its location. First, we found that accurate assessment of acuity required correction for myopia in all adult subjects. This is an important point because marmosets raised in laboratory conditions often have mild to severe myopia (Graham and Judge []: Vision Res 39:177-187), a finding that we confirm, and that would limit their utility for studies of vision if uncorrected. With corrected vision, we found that their acuity scales with eccentricity similar to that of humans and macaques, having roughly half the value of the human and with no clear departure for higher acuity in the periphery. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 300-313, 2017.


Assuntos
Callithrix/fisiologia , Movimentos Oculares/fisiologia , Modelos Animais , Miopia/fisiopatologia , Reconhecimento Visual de Modelos/fisiologia , Psicofísica/métodos , Acuidade Visual/fisiologia , Animais , Comportamento Animal
11.
Neuron ; 91(4): 920-930, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27499085

RESUMO

To deepen our understanding of object recognition, it is critical to understand the nature of transformations that occur in intermediate stages of processing in the ventral visual pathway, such as area V4. Neurons in V4 are selective to local features of global shape, such as extended contours. Previously, we found that V4 neurons selective for curved elements exhibit a high degree of spatial variation in their preference. If spatial variation in curvature selectivity was also marked by distinct temporal response patterns at different spatial locations, then it might be possible to untangle this information in subsequent processing based on temporal responses. Indeed, we find that V4 neurons whose receptive fields exhibit intricate selectivity also show variation in their temporal responses across locations. A computational model that decodes stimulus identity based on population responses benefits from using this temporal information, suggesting that it could provide a multiplexed code for spatio-temporal features.


Assuntos
Percepção de Forma/fisiologia , Neurônios/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Macaca mulatta , Modelos Neurológicos , Estimulação Luminosa , Fatores de Tempo
12.
Comp Med ; 66(3): 254-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27298252

RESUMO

A 5-y-old multiparous female common marmoset (Callithrix jacchus) presented with acute weight loss of approximately 25% over a 1-wk period. An abdominal mass was apparent on physical examination, and radiographs suggested peritoneal effusion. Exploratory laparotomy revealed hemoperitoneum and an enlarged, gray, hemorrhaging uterus; ovariohysterectomy was performed, and the marmoset recovered. Histologic evaluation of the ovaries and uterus revealed uterine rupture, with invasion of placental villi lined by trophoblasts through the myometrium to the serosal layer. Primary uterine rupture is a rare but serious obstetric event in humans and has been reported only rarely in NHP. This report is the first description of primary uterine rupture during early pregnancy in a common marmoset.


Assuntos
Doenças dos Macacos/diagnóstico por imagem , Ruptura Uterina/veterinária , Animais , Callithrix , Feminino , Doenças dos Macacos/patologia , Ruptura Uterina/diagnóstico por imagem , Ruptura Uterina/patologia
13.
J Neurophysiol ; 116(3): 1286-94, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27334951

RESUMO

Optogenetics has revolutionized the study of functional neuronal circuitry (Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Nat Neurosci 8: 1263-1268, 2005; Deisseroth K. Nat Methods 8: 26-29, 2011). Although these techniques have been most successfully implemented in rodent models, they have the potential to be similarly impactful in studies of nonhuman primate brains. Common marmosets (Callithrix jacchus) have recently emerged as a candidate primate model for gene editing, providing a potentially powerful model for studies of neural circuitry and disease in primates. The application of viral transduction methods in marmosets for identifying and manipulating neuronal circuitry is a crucial step in developing this species for neuroscience research. In the present study we developed a novel, chronic method to successfully induce rapid photostimulation in individual cortical neurons transduced by adeno-associated virus to express channelrhodopsin (ChR2) in awake marmosets. We found that large proportions of neurons could be effectively photoactivated following viral transduction and that this procedure could be repeated for several months. These data suggest that techniques for viral transduction and optical manipulation of neuronal populations are suitable for marmosets and can be combined with existing behavioral preparations in the species to elucidate the functional neural circuitry underlying perceptual and cognitive processes.


Assuntos
Encéfalo/fisiologia , Callithrix/fisiologia , Neurônios/fisiologia , Optogenética , Potenciais de Ação , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dependovirus/genética , Feminino , Vetores Genéticos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microeletrodos , Modelos Animais , Vias Neurais/fisiologia , Estimulação Luminosa , Rodopsina/genética , Rodopsina/metabolismo , Sorogrupo , Vigília
14.
Neuron ; 90(2): 219-33, 2016 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27100195

RESUMO

The common marmoset (Callithrix jacchus) has garnered interest recently as a powerful model for the future of neuroscience research. Much of this excitement has centered on the species' reproductive biology and compatibility with gene editing techniques, which together have provided a path for transgenic marmosets to contribute to the study of disease as well as basic brain mechanisms. In step with technical advances is the need to establish experimental paradigms that optimally tap into the marmosets' behavioral and cognitive capacities. While conditioned task performance of a marmoset can compare unfavorably with rhesus monkey performance on conventional testing paradigms, marmosets' social behavior and cognition are more similar to that of humans. For example, marmosets are among only a handful of primates that, like humans, routinely pair bond and care cooperatively for their young. They are also notably pro-social and exhibit social cognitive abilities, such as imitation, that are rare outside of the Apes. In this Primer, we describe key facets of marmoset natural social behavior and demonstrate that emerging behavioral paradigms are well suited to isolate components of marmoset cognition that are highly relevant to humans. These approaches generally embrace natural behavior, which has been rare in conventional primate testing, and thus allow for a new consideration of neural mechanisms underlying primate social cognition and signaling. We anticipate that through parallel technical and paradigmatic advances, marmosets will become an essential model of human social behavior, including its dysfunction in neuropsychiatric disorders.


Assuntos
Callithrix/psicologia , Modelos Animais , Comportamento Social , Animais , Animais Geneticamente Modificados/psicologia , Encéfalo/fisiologia , Callithrix/genética , Cognição , Modelos Animais de Doenças , Movimentos Oculares/fisiologia , Haplorrinos/psicologia , Humanos , Roedores , Transtornos do Comportamento Social/genética , Transtornos do Comportamento Social/psicologia , Vocalização Animal/fisiologia
15.
Neuron ; 86(3): 617-31, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25950631

RESUMO

One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators, and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive, and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward.


Assuntos
Encéfalo/fisiologia , Genes , Primatas/genética , Animais , Evolução Biológica , Humanos , Camundongos , Modelos Biológicos
16.
Proc Biol Sci ; 282(1807): 20150069, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904663

RESUMO

Conversational turn-taking is an integral part of language development, as it reflects a confluence of social factors that mitigate communication. Humans coordinate the timing of speech based on the behaviour of another speaker, a behaviour that is learned during infancy. While adults in several primate species engage in vocal turn-taking, the degree to which similar learning processes underlie its development in these non-human species or are unique to language is not clear. We recorded the natural vocal interactions of common marmosets (Callithrix jacchus) occurring with both their sibling twins and parents over the first year of life and observed at least two parallels with language development. First, marmoset turn-taking is a learned vocal behaviour. Second, marmoset parents potentially played a direct role in guiding the development of turn-taking by providing feedback to their offspring when errors occurred during vocal interactions similarly to what has been observed in humans. Though species-differences are also evident, these findings suggest that similar learning mechanisms may be implemented in the ontogeny of vocal turn-taking across our Order, a finding that has important implications for our understanding of language evolution.


Assuntos
Comunicação Animal , Callithrix/fisiologia , Aprendizagem , Vocalização Animal , Animais , Callithrix/crescimento & desenvolvimento , Comportamento Cooperativo , Feminino , Masculino
17.
J Neurophysiol ; 113(10): 3954-60, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25867740

RESUMO

Smooth pursuit eye movements stabilize slow-moving objects on the retina by matching eye velocity with target velocity. Two critical components are required to generate smooth pursuit: first, because it is a voluntary eye movement, the subject must select a target to pursue to engage the tracking system; and second, generating smooth pursuit requires a moving stimulus. We examined whether this behavior also exists in the common marmoset, a New World primate that is increasingly attracting attention as a genetic model for mental disease and systems neuroscience. We measured smooth pursuit in two marmosets, previously trained to perform fixation tasks, using the standard Rashbass step-ramp pursuit paradigm. We first measured the aspects of visual motion that drive pursuit eye movements. Smooth eye movements were in the same direction as target motion, indicating that pursuit was driven by target movement rather than by displacement. Both the open-loop acceleration and closed-loop eye velocity exhibited a linear relationship with target velocity for slow-moving targets, but this relationship declined for higher speeds. We next examined whether marmoset pursuit eye movements depend on an active engagement of the pursuit system by measuring smooth eye movements evoked by small perturbations of motion from fixation or during pursuit. Pursuit eye movements were much larger during pursuit than from fixation, indicating that pursuit is actively gated. Several practical advantages of the marmoset brain, including the accessibility of the middle temporal (MT) area and frontal eye fields at the cortical surface, merit its utilization for studying pursuit movements.


Assuntos
Percepção de Movimento/fisiologia , Movimento (Física) , Acompanhamento Ocular Uniforme/fisiologia , Retina/fisiologia , Aceleração , Animais , Callithrix , Estimulação Luminosa , Campos Visuais/fisiologia
18.
Neurosci Res ; 93: 20-46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683292

RESUMO

The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset's small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience.


Assuntos
Encéfalo/fisiologia , Callithrix/fisiologia , Modelos Animais , Visão Ocular/fisiologia , Percepção Visual , Animais , Evolução Biológica , Percepção de Cores , Visão de Cores/fisiologia , Comportamento Exploratório , Macaca/fisiologia , Comportamento Social , Visão Binocular
19.
Comp Med ; 64(4): 300-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25427343

RESUMO

Macaques are the most common animal model for studies in vision research, and due to their high value as research subjects, often continue to participate in studies well into old age. As is true in humans, visual acuity in macaques is susceptible to refractive errors. Here we report a case study in which an aged macaque demonstrated clear impairment in visual acuity according to performance on a demanding behavioral task. Refraction demonstrated bilateral myopia that significantly affected behavioral and visual tasks. Using corrective lenses, we were able to restore visual acuity. After correction of myopia, the macaque's performance on behavioral tasks was comparable to that of a healthy control. We screened 20 other male macaques to assess the incidence of refractive errors and ocular pathologies in a larger population. Hyperopia was the most frequent ametropia but was mild in all cases. A second macaque had mild myopia and astigmatism in one eye. There were no other pathologies observed on ocular examination. We developed a simple behavioral task that visual research laboratories could use to test visual acuity in macaques. The test was reliable and easily learned by the animals in 1 d. This case study stresses the importance of screening macaques involved in visual science for refractive errors and ocular pathologies to ensure the quality of research; we also provide simple methodology for screening visual acuity in these animals.


Assuntos
Animais de Laboratório , Astigmatismo/veterinária , Óculos/veterinária , Macaca mulatta , Doenças dos Macacos/terapia , Miopia/veterinária , Visão Ocular , Fatores Etários , Animais , Astigmatismo/diagnóstico , Astigmatismo/fisiopatologia , Astigmatismo/psicologia , Astigmatismo/terapia , Comportamento Animal , Masculino , Doenças dos Macacos/diagnóstico , Doenças dos Macacos/fisiopatologia , Doenças dos Macacos/psicologia , Miopia/diagnóstico , Miopia/fisiopatologia , Miopia/psicologia , Miopia/terapia , Valor Preditivo dos Testes , Refração Ocular , Reprodutibilidade dos Testes , Testes Visuais/veterinária , Acuidade Visual
20.
J Neurosci ; 34(4): 1183-94, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24453311

RESUMO

The common marmoset (Callithrix jacchus), a small-bodied New World primate, offers several advantages to complement vision research in larger primates. Studies in the anesthetized marmoset have detailed the anatomy and physiology of their visual system (Rosa et al., 2009) while studies of auditory and vocal processing have established their utility for awake and behaving neurophysiological investigations (Lu et al., 2001a,b; Eliades and Wang, 2008a,b; Osmanski and Wang, 2011; Remington et al., 2012). However, a critical unknown is whether marmosets can perform visual tasks under head restraint. This has been essential for studies in macaques, enabling both accurate eye tracking and head stabilization for neurophysiology. In one set of experiments we compared the free viewing behavior of head-fixed marmosets to that of macaques, and found that their saccadic behavior is comparable across a number of saccade metrics and that saccades target similar regions of interest including faces. In a second set of experiments we applied behavioral conditioning techniques to determine whether the marmoset could control fixation for liquid reward. Two marmosets could fixate a central point and ignore peripheral flashing stimuli, as needed for receptive field mapping. Both marmosets also performed an orientation discrimination task, exhibiting a saturating psychometric function with reliable performance and shorter reaction times for easier discriminations. These data suggest that the marmoset is a viable model for studies of active vision and its underlying neural mechanisms.


Assuntos
Callithrix , Modelos Animais , Neurofisiologia/métodos , Neurociências/métodos , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Animais , Condicionamento Operante , Movimentos Sacádicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...